

STARFIRE MINERALS INC 520-355 BURRARD STREET VANCOUVER, BC, V6C 2G8

Telephone: 604.669.5642 Facsimile: 604.687.6714

NEWS RELEASE

November 14, 2005 SFR: TSX-V

STARFIRE SUMMARIZES 2005 EXPLORATION PROGRAM AND PROPOSES AGGRESSIVE BUDGET FOR 2006

Starfire Minerals Inc. (SFR: TSX-V) announces final results of its successful exploration program on the Capri property located 140 km north of Ottawa. Encouraging results from the \$600,000 2005 program have Starfire management proposing a 2.5 million dollar budget for an aggressive follow up program. Starfire proposes a phased 13,000 m drill program in 2006 on three mineralized zones. To date exploration indicates that near surface mineralization is found at several locations that have been the subject of past and present exploration. To ensure the best targets are being pursued, an airborne survey of the entire property and newly acquired adjacent claim blocks, is being proposed, as most of the property has not been explored. The company is optimistic that the proposed 2006 program will delineate several Uranium resources amenable to open pit mining.

During the 2005 fieldwork season on the Capri property's grid I, II, and III Starfire completed; 62 km of line cutting, ground radiometric surveys, mapping, stripping, surface trenching and sampling. Seventeen Hundred Meters (1,700 m) of drilling, in 21 holes on grid I, was also completed as shown in Table 1.

Capri Property 2006

Starfire proposes a two-phase program to be implemented following an airborne radiometric survey and prospecting of the whole Capri property. Follow-up sampling and trenching shall be carried out on the new discoveries prior to drilling on the property.

Phase I: On Grid I a 2,000 m drilling program, on zones II and IV, is being proposed to define a mineralized resource; On Grid II, further line cutting, stripping and channel sampling are necessary to further define mineralized targets; On Grid III, further stripping and sampling will allow to quickly detail already known mineralized targets. A 1,000 m drill program will likely permit a preliminary resource calculation.

Phase II: Following positive Phase I results, a 10,000 m drill program is proposed on the three grids and a further advanced resource calculation will be performed. **Table 1** shows the preliminary budget for the Capri property for the 2006 fieldwork season.

Starfire Minerals Inc. Page 1 Final November 14, 2005

Table 1: Proposed Budget for Capri Uranium Property 2006

CAPRI	PROPERTY 2006 - PHASE I			
ACTIVITY	RATE	ESTIMATED COST		
Airborne Radiometric Survey		\$60,000		
Geology and Prospecting on Capri property		\$50,000		
Grid I				
Drilling Zones (2 & 4)	2,000m @ \$100/m	\$200,000		
Grid II				
Line cutting		\$5,000		
Stripping		\$20,000		
Ground Radiometric		\$5,000		
Trenching & Sampling		\$10,000		
Grid III				
Line cutting		\$5,000		
Stripping and Sampling		\$10,000		
Ground Radiometric		\$5,000		
Drilling	1,000m @ \$100/m	\$100,000		
Geological Crews	5-man crew @ \$3,000/day	\$180,000		
	Subtotal	\$650,000		
Contingency	15%	\$97,500		
Management Fees	10%	\$74,750		
	Total	\$822,250		
CAPRI	PROPERTY 2006 - PHASE II			
ACTIVITY	RATE	ESTIMATED COST		
Grid I				
Drilling	5,000m @ \$100/m	\$500,000		
	Drilling rate=70m/day			
Grid II				
Drilling	1,000m @ \$100/m	\$100,000		
Grid III				
Drilling	4,000m @ \$100/m	\$400,000		
Geological Crews	5-man crew @ \$3,000/day	\$430,000		
	Subtotal	\$1,430,000		
Contingency	15%	\$214,500		
Management Fees	10%	\$164,450		
	Total	\$1,808,950		

The budget is conditional to successful financings.

2005 Drill Program Results:

The results from the 2005 drill program are presented in **Table 2** below. The results show several intersections near 0.5 pound (229gms) per tonne, which is the company's target grade for defining a resource. The drilling and sampling to date suggests that more drilling is necessary before a resource calculation can be carried out.

Several noteworthy drill core intervals returned encouraging results: Z4-05 DDH 01 between 66.4m and 75.8m returned (178gm/9.4m): Z4-05 DDH 04; between 10 and 17.6m returned (205gm/7.6m) & between 49m and 55.9m returned (181gm/5.7m); Z4-05 DDH 06: between 57.3 and 73m returned (187grm/16.5m); Ram05 DDH-05; between 31.5m and 37m returned (219gm/5.5m).). The above noted sections are 'weighted averages' and are not true widths.

Table 2: Results of Drilling on Grid 1, Zone II (Ramy) and Zone 1V:

						e II (Kam	•				
		DH 01			DDH 02			DDH 03			DDH 04
From	То	Į U \	From	То	U	From	То	U	From	То	Uranium
(m)	(m)	(ppm)	(m)	(m)	(ppm)	(m)	(m)	(ppm)	(m)	(m)	(ppm)
30.3	31	100.6	7.7	8.6	97	3.6	4.5	110		8.7	370
31	32	76.7	9.15	9.7	140	4.5	5.5	110		11	26.6
32	33	8.3	9.7	11	71.7	5.5	6.5	120		11.7	20.9
37.7	38.8	13.4	11	12	39.2	6.5	7.5	43		13	34
40	41	12.4	13.6	14	50	7.5	8.5	21	13	14	14.8
41	42	20.4	28.1	28.3	29	8.5	9.5	15	14	15	85
42	43.2	27.4	31	31.5	65	9.5	10.5	47	15.3	15.65	147.7
43.2	44	10.8	38.9	41.2	11.6	10.5	11.5	340	15.65	16.6	450
44	45	31.9	41.2	42	12.2	12	13	160	16.6	17.6	870
45	46	25.1	42	43	10.9	13	14	58		18	33.8
46	47	15.5	43	44	14.2	14	15	68		30	9.8
47	48.15	16.3	44	45	13.6	15	16	33		31	88.6
50.4	50.9	41.9	45.2	46	28.3	16	17	66		32.2	58.6
52.2	53	40.4	46	47	4.6	17	18	100		33	41
53	54.3	25.9	47	48	52	18	19	27		34	32.8
54.3	55	6.2	48	49	34.9	19	20	28		35	52.2
55	56	12.8	49	50	105.5	20	20.8	10		36	66.9
56	57	11.2	50	51	28	20.8	22	19.2		36.5	19.3
57	58.4	52.9		52			21.3	160			
			51		10.9	21				38	26.6
58.4	59	22.8	52	52.85	5.2	22	23	19.7		39	38.6
59	59.9	56.2	52.85	53	10.7	23	24	5.2		40	19.9
59.9	60.9	16	54	55	13.9	24	25	4.6		40.75	18.1
60.9	61.2	260	55.9	56.65	5.9	25	26	44.5		40.95	330
61.1		23.8	56.65	57.2	16.3	26.5	26.9	30		42	35.3
62.75	64	44.1	57.65	57.8	3.6	26	27	23.6		43	13.9
64	65	17		60.4	5.1	27	28	48.5		44	3
65	66	5.6	60.4	62	17	28	29.4	53.2		44.8	5.7
66.4	66.8	260	62	62.6	45.7	29.4	30	22.9	44.8	46	11.5
66.8	68	26	62.6	62.9	38	30	31	15.9	46	47	4.2
68	69	2.1	62.9	64	22.3	31	32	28.4	47	48	6.6
69	70	11.7	64	65	4.2	32	33.3	11.8	48	49	3.7
70	71.15	9.5	65	66	7.9	33.3	34	4.5		50	83.9
71.15	72.4	18.3	66	67	16.1	34	35	23		50.6	82
72.4	72.9	280	67	67.6	15.2	35	36	56.6		51	260
72.9		2000	67.6	68	30.1	36	37	31.5		52	58.8
73.2	74.2	550	68	69.3	53.7	37.3	38	147.9		52	63.3
74.2	74.6	36.1	69.3	70.35	160	38	39.1	200		53.7	21.9
74.6	75.1	290	71	71.3	300	39.1	40	67.3		54.7	580
75.1	75.8	64.2	/ 1	, 1.3	500	40	41	84.3		55.9	120
7 3.1	, ,,,	UT. Z	-			41	42	3		57	35.3
	1		-	1	1		43	23.7			6.2
	+					42 43	44			57.3	
			-			_		10.9		58	8.4
	1					44	44.3	170		59	5.1
	1					46.7	46.9	90		60	11.4
	1				1	47.8	47.9	2200		60.7	18.1
	1					47.9	49	36		61.7	260
	1					49	50	48		63	26.1
						74.15	75.2	79		64	16
						75.2	76.7	67		65	59.8
						76.7	77.5	73	65	66.1	92.2
						77	77.3	4.1			
						77.5	78.5	110			
						78.9	79.8	52			
							·				

	rea: Z4-05 DDH 05			DDH 06			DDH 07		: Z4-05 DDH 1		
From	То	U	From	То	U	From	То	C	From		Uranium
(m)	(m)	(ppm)	(m)	(m)	(ppm)	(m)	(m)	(ppm)	(m)	(m)	(ppm)
4	5	20.8		17.4	68	23.45	25	6.5	29	30	4
5	6	18.6	17.7	18.7	20	25	26	6.5	30	31.2	20
6	7	0.9	19	20.2	29.2	26	27.3	7.7	31.2	32	16.2
7	8.25	2.8	20.2	21	4.7	52.15	52.8	65.8	32	33	29
8.25	10	14	21	22	24.1	52.8	54	52.4	33	34.3	8.5
10	11	4.4	22	23	5.5	54	55	18.2		-	
11	12.25	14.7	24	25	18.8	55	56	8.4			
12.2	13	10.7	25	26	82	56	57.4	11.6			
13	14	5.9	26	27	23.2	57.4	58	3.6		-	
14	15	2.6	27	28.2	30.9	58	59	8.2		-	
15	16.5	11.8	28.2	30	38.2	59	60	4.3			
16.5	17	8.3	30	31	33.4	60	61.5	5.6			
17	18	5.5	31	32.4	28.1	61.5	63	43.1			
18	19	8.4	32.4	34	22.9	63	64	6.2		1	
19	20	8.1	35	36	23.7	64	65.4	8.9		1	
20	20.5	2.2	36	37	49.3	65.4	65.65	1900		1	
21	22	9.3	36.8	38	60.3	68.8	71	12.8		1	
22	23	39	38	39	35						
23	24	133.2	39	40	25.9					1	
24	24.7	8.6	40	41.2	39.4					1	
24.8	26	15.7	41.1	42	14.5					1	
26	27	49.4	42	43	9.2		ļ				
27	28	20.1	43	44	10.9		ļ				
28	29.1	6.7	44	45	13		<u> </u>				
29	30	5.5	45	45.6	23.4		ļ				
30	31	12.2	45.6	47	28.6		<u> </u>				
31	32	11.4	47	48	5.7						
32	33.1	16.2	48	49	40						
33.3	34	7.2	49	49.8	18.1		ļ				
34	35	20.5		50.8	9.1		ļ				
35	36	19.7	50.8	51.05	140		ļ				
36	37	63	51.6	52.1	41		<u> </u>				
			52	53	13		ļ				
			53	54	77.7						
			54	55	23.5		<u> </u>				
				56	102.9						
				57.3	32.3						
			57.3	58.25			ļ				
			58	58.4	168.9		ļ				
			58.4	59.6	790						
			60	60.5	160						
			60.5	62.1	7.5						
			62.15	62.55	110						
			62.7	64	175.6						
			64	65	16.2						
			65	66.5	77.6						
			66.75	68	39						
			68	69	17.3						
			69	70	85.8						
			69.2	69.4	540						
			70	70.7	9.8						
				71.91	1050						
			71.9	72.5	720						
			72.1	73	239.3						
			73	74.2	8.5						
·	1							1			

_		DH 11
	To	U
_		(ppm)
10		12.6 154.1
-	2.6	19.3
14		40.5
15		25.5
16		106.2
_		25.4
18		91.9
19		343
20		17.6
_		6.8
22		22.9
23		15.3
24		25.9
25		3.7
26		9.8
27		64.9
28		35.2
	9.5	77.9
31		40.4
32		21.4
_		103.9
34		22.9
36		23.2
_		18
38		15.6
39		9.6
40		9.6
		32.2
42		27.6
43		68
44		
_		53.8
_		65.1
46		19.3
_		29.1
48		12.7
50		7.1 8.1
51		16.9
52		27.4
53		5.9
		20.9
55		19.8
56		17.6
57		9.9
58		2.3
59		2.3
60		2.4
61		2.4 9.7
_		
_	2.4	10.2
63		6.8
64		1.4
65		1.3
66		2.5
	5.7	13.1
68		26.8
69	9	81

Area: Z4-05 DDH 11 Continued									
From	То	U							
(m)	(m)	(ppm)							
69	70	46.3							
70	71.3	13.1							
103.4	104	2.3							
104	105.3	13.5							
105.3	107.1	10.6							
107.6	108.4	6.4							
108.4	109.4	13.7							
109.6	111	9.6							
111	112	8.6							
112	113	2.1							
113	113.8	67.6							

Area: Ram05 DDH 01 Continued									
From To Urania (m) (m) (ppn									
99	100	3							
100	101	1.3							
101	102	4.7							
102	103.1	2.9							
103.1	104	3.7							
104	104.8	3							

Area:F	Area:Ram05 DDH 03		Area: Ram05 DDH 05				Area: I	Ram05	DDH 06	Area: Ram05 DDH 06			
From	То	U	From	То	U		From	То	U	From	То	U	
(m)	(m)	(ppm)	(m)	(m)	(ppm)		(m)	(m)	(ppm)	(m)	(m)	(ppm)	
17.7	19	22.2	3.3	4	51.2		3.8	5	62.5	16	16.75	115.3	
19	20	7.1	4	5	99.1		5	6	90.9	16.75	18	36.9	
20	21	1.1	5	6	57.9		6	7	177.8	18	19	1.4	
21	22	43.2	6	7.55	119.3		7	8	114.2	19	20	1	
22	23	15.5	7.55	9	13.9		8	9	3.5	20	21.05	13.9	
23	24	57.8	9	10	4		9	10	50.1	21.05	22	32.9	
24	25	8.3	10	11.5	4.9		10	11	36.6	22	23	16.9	
25	26.2	21.7	11.8	13	52.4		11	12.4	61.8	23	24	19.3	
			13	14	112.7		12.35	13	20.1	24	25.35	82.4	
Area: R	lam05	DDH 07	14	15.5	43.9		13	14	2.5	33.3	34	2.3	
From	To	U	15.5	17	49.3		14	15	60.8	34	35	2.5	
7	8	48.2	17	18	57.4		15	16	84.5	35	36	1.6	
8.1	9	65	18	19	4.5					36	37.2	2.7	
9	10	14.2	19	19.75	3.9					37.2	38	2.4	
10	11	27.5	42.9	23	94					38	39	38.5	
			21	22	87					39	40	88	
Area: R	am05	DDH 08	19.75	21	22					40	41	53.2	
From	То	U	23	23.7	105.8					41	42	129.1	
5.8	7	17.1	23.7	25	186.4					42	43	85.2	
7	8	10.2	29.3	30.1	58.6					43	44	3.9	
8	9	26.5	31.5	33	25.7					44	44.8	8.7	
9	10	33.5	33	34	26.3					44.8	46	7.3	
10	11.5	33.2	34	35.5	752.3					46	47	3.8	
			35.5	37	8.5					47	48.4	4.6	
			37	38	2.8					48.4	49.7	10.3	
			38	39.4	2					49.7	50.85	10.2	
										50.85	52.1	2	
										52.1	53	2.9	
										53	54	1.3	
										54	55	1.1	
										55	56.15	2.2	
										56.45	57.15	73	
										57.15	58.9	17	

This press release was reviewed and verified by A. Ciesielski, DSc., P.Geo., the qualified person (QP) experienced in Uranium exploration currently working on the project.

Starfire Minerals Inc. is an exploration company with 3 Uranium properties, 2 in Quebec, 1 in Ontario, in addition to several precious and base metal properties near Timmins, Ontario.

ON BEHALF OF THE BOARD OF DIRECTORS OF STARFIRE MINERALS INC.

"Freeman Smith"

Freeman Smith, P.Geo., Director

THIS PRESS RELEASE WAS PREPARED BY MANAGEMENT WHO TAKES FULL RESPONSIBILITY FOR ITS CONTENTS. THE TSX VENTURE EXCHANGE DOES NOT ACCEPT RESPONSIBILITY FOR THE ADEQUACY OR ACCURACY OF THIS RELEASE.

Starfire Minerals Inc. Page 7 Final November 14, 2005